ISOVITEXIN O–GLUCOSIDES FROM AQUILEGIA VULGARIS L.

WIESŁAWA BYLKA

Department of Pharmacognosy, K. Marcinkowski University of Medical Sciences in Poznań, 10 Sieroca, 61–771 Poznań, Poland

Abstract: 4′-O–β–glucopyranoside of isovitexin from the leaves with stems and 4′–O–β–glucopyranosyl–2′–O–β–glucopyranosylisovitexin from the flowers of Aquilegia vulgaris L. were isolated. The structures of the compounds were determined by chemical and spectroscopic methods.

Keywords: Aquilegia vulgaris L.; Ranunculaceae; 4′–O–glucosyl–6–C–glucosylapigenin; 4′–2′–di–O–gluco-
syl–6–C–glucosylapigenin; isolation; identification.

Aquilegia vulgaris L. has been used in folk medicine against disorders in the therapy of jaundice especially. An ethanolic extract from the leaves with stems of columbine possesses of hepatoprotective activity (1). This extract, contains flavonoids (a principal flavonoid component – isocyrtisoside), its 7–O–glucoside and X′–O–glucoside as well as isorinventin, orientin, apigenin 7–O–rutinoside, apigenin 7–O–glucoside and apigenin. The flowers contain mainly: kaempferol 3,7–O–diglucoside, kaempferol 3,7,4′–O–triglucoside, and kaempferol 4′,7–O–diglucoside, kaempferol 3–O–glucoside, kaempferol 7–O–glucoside also apigenin 6–C–glu-
coside (isorivitexin) (2, 3, 4).

The aim of the present study was the isolation and identification of next two C–O–glucosylflavones from A. vulgaris L. with H2O and H2O–MeOH gradient. Fractions were further separated by preparative paper chromatography on Whatman No. 3 (HOAc–H2O 15:85). Final purification of compounds was executed on a Sephadex LH–20 (Pharmacia) column in MeOH as solvent. 70 mg of amorphous pale yellow po-

Identification

NMR spectra were recorded on Varian – 300 spectrometer operating at 300 and 75 MHz for proton and carbon, respectively. TMS as int. stand-
dard, chemical shifts (ppm) and J (Hz).

PC was carried out on Whatman No. 1 paper using solvent systems: (a) HOAc – H2O (15:85); (b) EtOAc – HCOOH – H2O (10:2:3 upper layer). Chromatograms were observed in UV light (λ=366 nm) before and after spraying with 1% AlCl3 in MeOH, 0.5% β–aminoester of diphenylboric acid (Naturstoffreagenz A) in MeOH. PPC was performed on Whatman No. 3 paper using (a) as a solvent system. TLC cellulose in (c) n–PrOH – EtOAc – H2O (7:2:1), aniline phthalate for sugar analysis.

Hydrolysis procedure: 1 mg of compounds VI and X were heated with 1M HCl at 100°C for 4 h. The hydrolysate were extracted with EtOAc. The water phase was controlled for sugars (TLC, c) and organic phase analyzed for flavonoids (PC a, c; PPC a). Enzymatic hydrolysis: 1 mg of VI and X were incubated at 40°C with β–glucosidase (Koch–Light) for 24 h. 4′–O–β–glucopyranosyl–2′–O–β–glucopyranosyl-
isovitexin VI.

PC Rp=0.72 (a); 0.19 (b)

UV λmax nm: MeOH 273, 322; +NaOAc 282, 340;

EXPERIMENTAL

Plant material, extraction and isolation

Plant material was described in previous works (1997, 1999). The dried plant material (100 g of leaves with stems and 50 g of flowers) were extracted with hot MeOH. The extracts were concen-

trated with hot water and filtered. The clear brown filtrate was successively extracted with CHCl3, EtOAc and EtOAc–MeOH (9:1). The water layer was subjected to CC polyamide (Woelm)
RESULTS AND DISCUSSION

Methanol extracts were received from the leaves with stems and flowers of *A. vulgaris* L. which were then vaporized, precipitated using hot water and filtered. The filtrate was then successively extracted with CHCl₃, EtOAc and EtOAc–MeOH (9:1). The EtOAc and EtOAc–MeOH extracts contained flavonoids, which the course of separation and identification was described earlier (2, 3, 4). Chromatographic separation of the aqueous fraction resulted in obtaining two C – O-glucosyl-flavonoids: VI from flowers and X from leaves with stems.

Compounds of VII and X were characterized by brown fluorescence in UV light (λ=366 nm) which did not alter under NH₃ vapor, what indicated that C–5 contained free group of OH, and in C–4′ substituted in both compounds (5).

Analysis of UV spectrum of methanol solutions of VI and X compounds and diagnostic shifts confirmed free groups OH in C–5, substituted in C–4′ and indicated free group OH in C–7 position and lack of ortho–dihydroxyl group in ring B (5).

Acid hydrolysis VI and X yielded glucose (co–TLC, system a) and a mixture of two isomeric C–glycosylflavonones: A and B which were Wessely Moser rearrangement products; (PC analysis, system a: R=0.48 A; 0.27 B and system b: R=0.62 A; 0.44 B). The compounds A and B were separated by PC on Whatman No. 3 in system a. The compounds were eluted with MeOH, subjected to co–chromatography (Rf values were in agreement with isovitexin and vitexin) and UV analysis. Bateochromic shift of A and B, compounds after addition of NaOMe between 55–65 nm together with the increase of intensity, indicated that in C–4′ there is also OH group, liberated during hydrolysis. During the above analysis it was discovered, that VI and X compounds are substituted by glucose in the position C–4′ which is connected with O–glycosidic linkage. Both compounds hydrolysed under the influence of β–glucosidase what indicated β–configuration of O–glycosides linkages.

More information was found following analysis of 'H and '13C NMR spectrum. In the 'H NMR spectrum of VI and X the doublets were observed at δ=8.06 ppm with coupling constants J=9.0 Hz and the doublet at δ=7.20 ppm (J=8.9–9.2 Hz) corresponded to the H–2′, 6′ protons and the H–3′, 5′ protons, respectively. Signals at δ=6.90 ppm (VI) and δ=6.89 (X) corresponded to the protons H–8, a singlets at δ=6.56 (VI) and δ=6.57 (X) corresponded to the protons H–3. Lack of signals for H–6 in the spectrum of both compounds indicated substitution in this position. In the range of δ=4.34–5.03 ppm three signals for VI and two signals for X were attributed to the anonomic protons of sugars. The coupling constants of J=6.81–9.89 Hz indicated the β-configuration of the glycosidic linkages.

The position of attachment of sugars was deduced from the '13C NMR spectral data. C–6 glucosylation in VI and X resulted from downfield shift of C–6 signals do=108.8 ppm (Δδ=10 ppm); this signal in unsubstituted apigenin appears at 98.8 ppm (6, 7).

A downfield shift of C–1′ signal (δ=123.7 ppm) and an upfield shift of the C–4′ signal (δ=160.7 ppm in VI and 160.5 ppm in X)
Isorivitin O-glucosides from A. vulgaris L.

275

comparison with isorivitin (C-1', δ=121.04; C-4', δ=160.94) showed that the two glucose moieties were linked to C-4' by the O-glycosidic linkage in both compounds (6, 7). The C-2'' signal of 6-C-glucose in 13C NMR spectrum VI was shifted downfield by 12.3 ppm in comparison with isorivitin and appeared at δ=82.7 ppm, while the adjacent anomic carbon underwent an upfield shift of 2.0 ppm at δ=70.9 ppm therefore, the linkage of the third glucose molecule in VI proved to be at the C-2''. Hence, the structure of VI, obtained from the flowers was determined to be 4'-O-β-glucopyranosyl-2''-O-glucopyranosylisorivitin and compounds X separated from leaves and stems proved to be 4'-O-β-glucopyranosylisorivitin.

The compounds VI and X do not occur often in the plant kingdom. Isorivitin 4'-O-glucoside was separated from few plants genus Gentiana (np. Gentianaceae) (8), from genus Briza (Graminae) (9). Cerastium arvense (Caryophyllaceae) (10); however 4'-O-glucoside of 2''-O-glucosylisorivitin for the first time was separated from Gentiana asclepiadea (11).

REFERENCES


Received: 26.02.2001