EVALUATION OF LIPOPHILIC PROPERTIES OF BETAMETHASONE AND RELATED COMPOUNDS

MAŁGORZATA DOŁOWY * and ALINA PYKA

Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland

Abstract: The lipophilicity (R_{MW}) of betamethasone and its four related compounds: betamethasone-17,21dipropionate, betamethasone-17-valerate, betamethasone-21-valerate and also betamethasone disodium phosphate was determined by reversed phase HPTLC and various mobile phase systems (methanol-water, dioxanewater and acetonitrile-water). The chromatographic lipophilicity parameters obtained for all examined compounds using abovementioned mobile phases onto three chromatographic plates (RP-2F₂₅₄, RP-8F₂₅₄, RP-18WF₂₅₄) were compared with the theoretical partition coefficients which have been calculated by different computing programs: AlogPs, AClogP, AlogP, MlogP, KOWWIN, xlogP2, xlogP3, logP_{ChemDraw} as well as with logP measured by shake-flask method. The results of this work demonstrate that regardless of applied method the greatest similarity in lipophilic properties show betamethasone-17-valerate, betamethasone-21-valerate and also betamethasone 17,21-dipropionate. The influence of solvent system as mobile phase on R_{MW} values of examined compounds was observed. Among different mobile phases (organic modifier-water) proposed in this study, which allowed obtaining the reliable chromatographic lipophilicity parameters for all studied compounds is methanol-water mixture. The performance investigations showed that RP-HPTLC method has proved to be a rapid and cost effective analytical tool for describing the lipophilic properties of betamethasone and its related compounds.

Keywords: betamethasone, lipophilicity, cluster analysis, logP, R_{MW}, RP-HPTLC

Betamethasone (9 α -fluoro-16 β -methyl-11 β , 17α ,21-trihydroxy-1,4-pregnadiene-3,20-dione) is a synthetic glucocorticoid (GC). Some esters and salts of this compound are widely used as antiinflammatory, immunosuppressive and antiproliferative agents, and also in dermatological therapy of different skin diseases (1, 2). Despite minor differences in chemical structures, betamethasone derivatives may have various pharmacological effects. From the data which are available in literature, it is obvious that among different physicochemical properties, lipophilicity of drugs including skin preparations has significant impact on their biological activity and dermal permeation (3, 4). The quantitative descriptor of lipophilicity is the partition coefficient (P) or its decimal logarithm (logP) which is usually determined by traditional, but time consuming shake-flask method. Theoretically, logP value can be calculated from molecular structure with the use of commercial computational programs (5, 6). Recently, a new possibility in prediction of the lipophilicity parameters was opened by

use of the following chromatographic methods: RP-TLC, RP-HPTLC and also RP-HPLC. The main advantages of the chromatographic methods are: decreasing of development time and small amount of compounds needed for the determination of lipophilicity parameters. Numerous research papers involved the application of reversed thin-layer chromatography and high-performance chromatography to determine the lipophilicity of various organic compounds (7-13). Many of the original works which were focused on QSAR study (quantitative structure-activity relationship) indicated that the lipophilicity parameter determined using various methods (including liquid chromatography) correlates well with other physicochemical descriptors such as dissociation constant, polarity and also with topological indices and plays important role in predicting of drug behavior in biological system (e.g., in biological membranes and tissues). Significant correlations obtained between the chromatographic lipophilicity parameters of different organic compounds (determined by means of RP-

^{*} Corresponding author: e-mail: mdolowy@sum.edu.pl

с 1. глроринску раганск		compounds outs	allicu ustrig carcula	atiling procedures	allu also uy sliake-li	ask illeuiou (22).				
-				Lipophi	licity parameters	calculated by the	e use of theoretica	methods		
Compound	$logP_{exp}$	$AlogP_s$	AClogP	AlogP	xlogP2	xlogP3	$logP_{kowwin}$	MlogP	$logP \ _{ChemDraw}$	$logP_{\rm average}(\pm SD)$
Betamethasone	1.83	1.93	I	ı	1.14	ı	1.72	ı	1.94	1.60 ± 0.41
etamethasone-17,21- dipropionate		3.69	3.99	2.89	2.83	6.38	3.97	3.10	4.68	3.84 ± 1.22
3etamethasone-17- valerate	3.60	3.76	3.52	3.19	2.84	4.60	3.94	2.84	3.91	3.53 ± 0.64
3etamethasone-21-	3.87	3.65	3.52	2.90	2.84	4.99	3.94	2.84	3.91	3.52 ± 0.78

Table 1. Lipophilicity pa

TLC or RP-HPLC techniques) and their biological activity, e.g., antitumoral, antibacterial and also cardiovascular, are widely presented in literature from the last decade (10-13).

The present work is continuation of earlier investigations concerning TLC lipophilicity study of selected steroid compounds which have different pharmacological effect such as free and conjugated (with taurine or glycine) bile acids present in bile, other bile acids like ursodeoxycholic acid and dehydrocholic acid, which are widely applied in hepatic diseases in form of respective pharmaceutical formulations and also some anabolic steroids: stanozolol, 19-nortestosterone and mesterolone (14-23). Previous papers allowed to confirm the compatibility of the lipophilicity parameter R_{MW} (determined by RP-TLC and RP-HPTLC) of abovementioned compounds with their theoretical partition coefficients (logP) calculated by use of various computational programs: AlogPs, logP_{KOWWIN}, xlogP2, xlogP3, milogP, AlogP, MlogP and also with measured (by shake-flask method) n-octanol-water partition coefficient $(log P_{exp})$.

Continuing research in this field, the objective of the current study was to evaluate and compare the lipophilicity (R_{MW}) of betamethasone (B) and its related compounds such as: betamethasone-17,21-dipropionate (BP), betamethasone-17-valerate (BV17), betamethasone-21-valerate (BV21) and also betamethasone disodium phosphate (BPh) by means of reversed phase high performance thinlayer chromatography (RP-HPTLC) under different chromatographic conditions. Moreover, the theoretical determinations of logP values obtained using the internet module (AlogPS 2.1-vcclab): AlogPs, AClogP, AlogP, MlogP, KOWWIN, xlogP2, and xlogP3 and by software Cambridge ChemDraw were performed. According to our knowledge, until today the lipophilicity parameters obtained by chromatographic methods of betamethasone derivatives such as BP, BV17, BV21 and also BPh have not yet been published in the literature and in DrugBank (24). Therefore, the main objective of this work was to determine and compare the lipophilicity parameters of betamethasone and its four related compounds obtained by means of RP-HPTLC under various chromatographic conditions and also using the computational methods.

Moreover, the influence of the chromatographic conditions such as the kind of mobile phase system and the type of chromatographic plates on lipophilicity measurements of investigated compounds by RP-HPTLC method was discussed.

 1.36 ± 2.00

1.07

ı.

2.23

0.56

i

-0.99

3.62

i

disodium phosphate SD = standard deviation.

Betamethasone

valerate

Betamethasone-17 dipropionate Betamethasone

EXPERIMENTAL

Chemicals and reference standards

Mobile phase components: methanol, dioxane and acetonitrile for liquid chromatography were purchased from POCh (Gliwice, Poland). Distillated water was obtained from Department of Analytical Chemistry (Medical University of Silesia, Sosnowiec, Poland). The reference standards of betamethasone (CAS No. 378-44-9), betamethasone-17,21-dipropionate (CAS No. 5593-20-4), betamethasone-17-valerate (CAS No. 2152-44-5), betamethasone-21-valerate (CAS No. 2240-28-0) and also betamethasone disodium phosphate (CAS No. 151-73-5) were from commercial source (Sigma-Aldrich, St. Louis, MO, USA). Standard solutions of five examined compounds at concentration of 5 mg/mL each were prepared in ethanol (96%, pure for analysis) from POCh (Gliwice, Poland).

Determination of chromatographic parameter of lipophilicity (R_{MW}) by use of RP-HPTLC

Lipophilicity of betamethasone and its related compounds was determined by thin-layer chromatography on 10 × 10 cm RP-HPTLC plates: RP-8F₂₅₄ (E. Merck, Darmstadt, Germany, Art. 1.15424), RP-2F₂₅₄, (E. Merck, Darmstadt, Germany, Art 1.13726) and also on RP-18WF₂₅₄ (E. Merck, Darmstadt, Germany, Art. 13124). The solutions of examined compounds were spotted separately onto chromatographic plates in quantity of 3 μ L (15 μ g per spot). The chromatograms were developed using the mixtures of organic modifierwater in different volume compositions. The content of organic modifier (e.g., methanol, dioxane, acetonitrile) in mobile phase was gradually varied by 5% (v/v) from 20 to 100 (%, v/v). Fifty mL of respective mobile phase was placed into a classical chromatographic chamber (Camag, Muttenz, Switzerland). The chamber was saturated with solvent vapor for 30 min. The chromatograms were developed to distance of 80 mm at temperature of $20 \pm 2^{\circ}$ C. After development, the plates were dried at room temperature. Each chromatogram was run in triplicate. The spots were localized in UV at $\lambda =$ 254 nm (Camag, Muttenz, Switzerland). For subsequent calculations, mean R_E values obtained for B, BP, BV17 BV21 and also BPh on three chromatographic plates: RP-2F254, RP-8F254, RP-18WF254 and using mobile phases: methanol-water, dioxanewater, acetonitrile-water in various compositions were converted to R_M values according to the expression:

$$R_M = \log\left(\frac{1}{R_F} - 1\right)$$
[1]

Linear correlation between R_M and volume fraction of organic modifier in mobile phase (ϕ) permits an extrapolation of calculated R_M values to the zero concentration of organic modifier accordance with Soczewiński-Wachtmeister's equation [2] and it allowed to determine the relative chromatographic parameter R_{MW} (3):

$$R_{\rm M} = R_{\rm MW} - S \times \phi \qquad [2]$$

where: R_M is the R_M value of examined compound, R_{MW} is the R_M value extrapolated to zero concentration of organic modifier in mobile phase, S is the slope of the regression plot, φ is the volume fraction of organic modifier (e.g., methanol, dioxane, acetonitrile) in mobile phase.

Determining the theoretical partition coefficients (logP)

The computationally calculated logP values expressed as AlogPs, AClogP, AlogP, MlogP, KOWWIN, xlogP2, xlogP3, their mean value (average logP) and also experimental logP_{exp} for all examined compounds were determined *via* on line at VCCLAB.org website (25). Additionally, in order to determine the logP value of examined compounds the software Cambridge ChemDraw 13.0 Ultra was applied.

Regression and cluster analysis

Regression and cluster analysis of obtained results were performed with the use of computer software STATISTICA 10.0.

RESULTS AND DISCUSSION

In order to estimate the lipophilic properties of five examined compounds: B, BP, BV17, BV21 and also BPh, the partition coefficient (logP) determined on the basis of their chemical structures by use of various computational programs from internet database (via on-line at VCCLAB.org website) and by software Cambridge ChemDraw 13.0 Ultra were compared. The values of logP: AlogPs, AClogP, AlogP, MlogP, KOWWIN, xlogP2, xlogP3, their mean value (average logP), measured logP value (determined by shake flask method) and also logP calculated by software Cambridge ChemDraw 13.0 Ultra $(logP_{ChemDraw})$ are presented in Table 1. Analysis of obtained logP results: AlogPs, xlogP2, $logP_{average}$ and also $logP_{ChemDraw}$, which are available for all (five) tested compounds (Table 1), indicates that generally the theoretical log P value obtained for each investigated compound, especially for BPh,

	Parameters of linear correlations (\pm SD) $R_M = R_{MW} - S \times \phi^*$							
Compound	R _{MW}	S	r	s	F	n		
		RP-2I	F ₂₅₄					
Betamethasone	2.255 (± 0.158)	3.627 (± 0.203)	0.995	0.060	320.4	8		
Betamethasone-17,21- dipropionate	3.418 (± 0.218)	4.478 (± 0.275)	0.992	0.084	265.9	9		
Betamethasone-17- valerate	3.258 (± 0.179)	4.345 (± 0.226)	0.995	0.069	370.9	7		
Betamethasone-21- valerate	3.583 (± 0.138)	4.748 (± 0.174)	0.997	0.053	745.9	8		
Betamethasone disodium phosphate	2.448 (± 0.351)	3.773 (± 0.406)	0.983	0.078	86.3	6		
		RP-8F	254					
Betamethasone	3.093 (± 0.325)	4.407 (± 0.445)	0.989	0.080	98.1	9		
Betamethasone-17,21- dipropionate	3.876 (± 0.421)	4.666 (± 0.505)	0.983	0.116	85.3	8		
Betamethasone-17- valerate	4.093 (± 0.325)	4.896 (± 0.389)	0.991	0.089	158.1	8		
Betamethasone-21- valerate	4.457 (± 0.398)	5.338 (± 0.477)	0.988	0.109	125.1	9		
Betamethasone disodium phosphate	0.776 (± 0.091)	1.699 (± 0.114)	0.996	0.034	224.0	6		
	RP-18WF ₂₅₄							
Betamethasone	2.090 (± 0.135)	3.066 (± 0.171)	0.994	0.052	322.7	9		
Betamethasone-17,21- dipropionate	3.027 (± 0.178)	3.714 (± 0.222)	0.993	0.071	278.9	8		
Betamethasone-17- valerate	3.027 (± 0.195)	3.714 (± 0.243)	0.992	0.078	232.8	9		
Betamethasone-21- valerate	2.958 (± 0.089)	3.699 (± 0.011)	0.998	0.034	1056.2	8		
Betamethasone disodium phosphate	1.980 (± 0.383)	2.781 (± 0.458)	0.962	0.110	36.9	5		

Table 2. Parameters of the linear correlations (\pm SD) between R_M and ϕ values of examined compounds obtained on different chromatographic plates and by use of various content of organic modifier in mobile phase: methanol-water, Eq. R_M = R_{MW} - S × ϕ^* .

n - number of points used to derive the particular regressions; r - correlation coefficient; s - standard error; F - value of Fisher test, SD - standard deviation, * - for all equations the significance level p < 0.001.

differed depending on the powers of calculated programs. On the basis of logP values determined by means of the algorithm xlogP2 and also by software ChemDraw (logP_{ChemDraw}), it could be observed that the lipophilicity of the examined compounds decreases in the following order: BP \cong BV17 \cong BV21 > B > BPh and BP > BV17 \cong BV21 > B > BPh, respectively. Thus, it shows the lowest lipophilicity of betamethasone disodium phosphate (BPh) among all tested compounds. In the case of logP predicted using the procedure AlogP_s, the theoretical logP value for this compound (BPh) indicates relatively a higher value in comparison with those predicted as xlogP2 and logP_{ChemDraw} and is evidently comparable with logP obtained for BV17, BV21 and BP (Table 1). Further interpretation of the theoretical logP values obtained from databases as logP_{avarage} (\pm SD) confirms the fact that the theoretical lipophilicity factors such as logP_{avarage} of examined compounds should be critically discussed on the basis of statistical parameters like, for example, standard deviation (SD). Taking into account the standard deviation of estimate of logP_{average}, particularly that obtained for previously discussed betamethasone disodium phosphate (BPh), it may be noted that including the SD value to arithmetic mean value of log P (logP_{average}) of BPh and other studied compounds (B, BV17, BV21, BP) has significant impact on logP_{average} value and changes the relation between lipophilicity properties of five examined substances in comparison with those, which were obtained by means of arithmetic mean value of log P_{average} only. The values of logP_{average} obtained after adding to them the SD value allow to perform the studied compounds in the following order of decreased lipophilicity: BP > BV21 \cong BV17 > BPh > B. Subtracting the SD value from arithmetic mean value of log P (logP_{average}) of each compound resulted in obtaining the following relation between lipophilicity properties: BV17 \cong BV21 > BP > B > BPh. The results which were presented above have shown that computational methods are still in development phase and they are imperfect (26) in comparison with experimental methods e.g., chromatography. From this fact the following conclusion can be made that the theoretical determination of logP allows for preliminary estimation of lipophilicity range of betamethasone and its related compounds. In order to obtain more reliable and accurate lipophilicity values of betamethasone derivatives, correlation of the theoretical lipophilicity parameter (logP) with experimental values should be executed. Finally, to describe the relationship between lipophilic properties of all examined compounds on

Table 3. Parameters of the linear correlations (\pm SD) between R_M and ϕ values of examined compounds obtained on different chromatographic plates and by use of various content of organic modifier in mobile phase: dioxane-water, Eq. $R_M = R_{MW} - S \times \phi^*$.

	Parameters	s of linear correlations	$(\pm SD) R_{M} =$	R_{MW} - $S \times \phi^*$		
Compound	R _{MW}	S	r	s	F	n
		RP-2	F ₂₅₄			
Betamethasone	2.325 (± 0.313)	3.932 (± 0.414)	0.989	0.135	90.3	9
Betamethasone-17,21- dipropionate	3.068 (± 0.826)	4.597 (± 1.060)	0.908	0.464	18.8	8
Betamethasone-17- valerate	2.803 (± 0.789)	4.333 (± 1.013)	0.906	0.444	18.3	9
Betamethasone-21- valerate	4.178 (± 0.237)	5.909 (± 0.314)	0.997	0.102	355.2	7
Betamethasone disodium phosphate	0.426 (± 0.262)	1.743 (± 0.301)	0.971	0.072	33.5	5
	1	RP-8	254			
Betamethasone	1.762 (± 0.356)	3.042 (± 0.457)	0.958	0.200	40.2	9
Betamethasone-17,21- dipropionate	2.998 (± 0.567)	4.222 (± 0.688)	0.962	0.230	37.6	9
Betamethasone-17- valerate	2.803 (± 0.581)	4.034 (± 0.705)	0.957	0.236	32.7	9
Betamethasone-21- valerate	3.197 (± 0.605)	4.438 (± 0.735)	0.961	0.246	30.8	8
Betamethasone disodium phosphate	0.266 (± 0.253)	1.709 (± 0.349)	0.943	0.122	23.9	6
		RP-18	8WF ₂₅₄			
Betamethasone	2.451 (± 0.606)	4.154 (± 0.736)	0.956	0.246	70.7	9
Betamethasone-17,21- dipropionate	3.907 (± 0.489)	5.688 (± 0.593)	0.984	0.198	91.9	8
Betamethasone-17- valerate	3.694 (± 0.511)	5.467 (± 0.621)	0.981	0.208	77.6	9
Betamethasone-21- valerate	3.932 (± 0.507)	5.709 (± 0.616)	0.983	0.206	85.9	8
Betamethasone disodium phosphate	0.248 (± 0.298)	1.984 (± 0.353)	0.956	0.134	31.6	5

n - number of points used to derive the particular regressions; r - correlation coefficient; s - standard error; F - value of Fisher test, SD - standard deviation, * - for all equations the significance level p < 0.001.

	Parameters of linear correlations (\pm SD) $R_M = R_{MW} - S \times \phi^*$						
Compound	R _{MW}	S	r	s	F	n	
		RP-2	F ₂₅₄				
Betamethasone	3.410 (± 1.189)	5.820 (± 1.578)	0.934	0.249	13.6	9	
Betamethasone-17,21- dipropionate	1.787 (± 0.287)	2.768 (± 0.348)	0.970	0.100	63.1	9	
Betamethasone-17- valerate	1.990 (± 0.212)	3.188 (± 0.270)	0.989	0.056	139.6	9	
Betamethasone-21- valerate	2.362 (± 0.133)	3.605 (± 0.169)	0.997	0.035	455.6	9	
Betamethasone disodium phosphate	0.814 (± 0.119)	1.256 (± 0.152)	0.986	0.014	68.3	5	
		RP-8F	254				
Betamethasone	1.332 (± 0.444)	2.620 (± 0.518)	0.963	0.116	25.5	9	
Betamethasone-17,21- dipropionate	1.956 (± 0.345)	2.769 (± 0.407)	0.969	0.105	46.4	9	
Betamethasone-17- valerate	1.141 (± 0.188)	1.897 (± 0.223)	0.980	0.058	72.6	9	
Betamethasone-21- valerate	1.566 (± 0.295)	2.388 (± 0.348)	0.970	0.090	47.2	9	
Betamethasone disodium phosphate	0.974 (± 0.370)	2.649 (± 0.543)	0.974	0.058	23.8	5	
		RP-18	3WF ₂₅₄				
Betamethasone	0.698 (± 0.097)	1.502 (± 0.124)	0.993	0.018	146.2	9	
Betamethasone-17,21- dipropionate	0.782 (± 0.037)	1.143 (± 0.037)	0.998	0.017	972.7	9	
Betamethasone-17- valerate	0.502 (± 0.047)	0.796 (± 0.059)	0.994	0.016	182.7	9	
Betamethasone-21- valerate	0.674 (± 0.010)	1.064 (± 0.012)	0.999	0.003	7400.3	9	
Betamethasone disodium phosphate	0.490 (± 0.056)	0.384 (± 0.060)	0.976	0.023	40.6	5	

Table 4. Parameters of the linear correlations (\pm SD) between R_M and ϕ values of examined compounds obtained on different chromatographic plates and by use of various content of organic modifier in mobile phase: acetonitrile-water, Eq. $R_M = R_{MW} - S \times \phi^*$.

n - number of points used to derive the particular regressions; r - correlation coefficient; s - standard error; F - value of Fisher test, SD - standard deviation, * - for all equations the significance level p < 0.001.

the basis of obtained theoretical parameters of lipophilicity (logP), the computationally predicted logP values were analyzed by means of cluster analysis (CA). Dendrogram of the similarity analysis (single-bond method, *Euclidean-distance*) of theoretically determined lipophilicity parameters (AlogPs, xlogP2, logP_{ChemDraw}, logP_{average} (\pm SD)) in Figure 1 demonstrates that the biggest similarity in lipophilicity parameters (logP) is between BV17, BV21 and BP which form one characteristic cluster. Similar dependence could be observed between B and BPh which form the second cluster on this dendrogram. It could be suggested that the applied cluster analysis permits grouping the studied compounds into two subgroups (Fig. 1). The first subgroup form BV17, BV21 and BP. To the second subgroup belong B and BPh.

In order to confirm the lipophilic properties of four steroid compounds of betamethasone as well as betamethasone which have been predicted by theoretical procedures, an experimental method such as high performance thin layer chromatography in reversed phase system (RP-HPTLC) was applied. The R_F values measured for all examined compounds under different chromatographic conditions: on the chromatographic plates RP-2F₂₅₄, RP-8F₂₅₄, RP-18WF₂₅₄ and mobile phases: methanol-water, dioxane-water, acetonitrile-water in various volume compositions were used to calculate the R_M values. The relative chromatographic parameter of lipophilicity (R_{MW}) was determined for each compound by extrapolation of R_M values to zero content of organic modifier (methanol, dioxane or acetonitrile, respectively) in mobile phase. Important parameters of obtained linear correlations between R_M and φ (the content of organic modifier in mobile phase used) such as *r* - correlation coefficient, *s* standard error, *p* - significance level and *F*-value of

Figure 1.Cluster analysis of logP values of examined compounds determined by the use of selected computational procedures: AlogPS, xlogP2, $logP_{ChemDraw}$ and $logP_{average}$. B = Betamethasone, BV17 = Betamethasone-17-valerate, BV21 = Betamethasone-21-valerate, BP = Betamethasone-17,21-dipropionate, BPh = Betamethasone disodium phosphate

Figure 2. Cluster analysis of R_{MW} values for examined compounds obtained on applied chromatographic plates developed using mobile phases: methanol-water (a), dioxane-water (b) and acetonitrile-water (c). B = Betamethasone, BV17 = Betamethasone-17-valerate, BV21 = Betamethasone-21-valerate, BP = Betamethasone-17,21-dipropionate, BPh = Betamethasone disodium phosphate

Fisher test are presented in Tables 2-4. The best linear correlations were found by use of methanolwater as mobile phase. The high correlation coefficients (r) and also small values of the standard errors of the estimates (s) indicated that all obtained equations [2] are highly significant and can be used to calculate the R_{MW} values of examined steroids (Table 2). Additionally, the data in Table 2 demonstrate that similarly like in the case of previously presented logP values, the lowest R_{MW} value obtained by methanol-water system on three applied chromatographic plates is shown by BPh. Dendrogram of similarity of R_{MW} values performed for studied compounds indicates that regardless of applied chromatographic plates (RP-2F₂₅₄, RP-8F₂₅₄, RP-18WF₂₅₄) and using mixture of methanol-water mixture as mobile phase, the biggest similarity in lipophilic properties have: BV17, BP and BV21. Betamethasone (B) and betamethasone disodium phosphate (BPh) indicate poorer similarity in R_{MW} values in comparison with them (Fig. 2a).

The linear dependencies between $R_{\scriptscriptstyle M}$ and ϕ obtained by means of other mobile phase systems: dioxane-water and also acetonitrile-water are presented in Tables 3 and 4. It can be noted that the change of the kind of organic modifier in mobile phase used from methanol to dioxane and also to acetonitrile has impact on R_{MW} values of tested steroids, especially for disodium phosphate (BPh). For both mobile phases: dioxane-water and acetonitrile-water a significant decrease in R_{MW} values for BPh in comparison with methanol-water mixture is shown. The data confirm some difficulties observed in determination of lipophilicity parameter for BhP by experimental methods, similarly like in the case of computed logP values which were determined for this compound by selected algorithms only: AlogPs, AClogP, xlogP2, xlogP3, logP_{ChemDraw}, logP_{average}.

Increasing of standard error of linear estimates between R_{MW} and ϕ obtained for acetonitrile-water as mobile phase indicates that this mobile phase is not suitable for describing the lipophilicity of disodium phosphate. This fact can be explained by different solubility of BPh in applied solvent systems and the differences in their power of elution. According to research paper prepared by Komsta et al. (26), the chromatographic parameters should be determined by means of optimum chromatographic conditions including suitable mobile phase and a proper kind of chromatographic plates. As was reported (26), among numerous mobile phases which are widely used in lipophilicity study the best are methanol-water and dioxane-water. Comparison of R_{MW} results obtained in our experiment (Tables 2, 3 and 4) confirms this suggestion. Dendrogram of the similarity analysis of R_{MW} values estimated using dioxane-water (Fig. 2b) shows that this mobile phase system gives similar results in R_{MW} values of five examined steroids like previously described methanol-water. It could be noted that similarly like by methanol-water, the solvent system: dioxanewater gives the greatest similarity in R_{MW} value between: BV17, BP and also B21 which form one cluster (one subgroup) (Fig. 2b). Dendrogram of the similarity analysis of R_{MW} values of examined compounds obtained by the use of acetonitrile-water mixture as mobile phase is similar, but indicates the small differences in Euclidean distance between BV17, B21 and BP in relation to those obtained by methanol-water and also by dioxane-water. In this case, the smallest distance indicates not BP and BV 17, but rather BV17 and BV21 (Fig. 2c). Generally, it could be said that the three described steroids: BP, BV17 and BV21 form one cluster (one subgroup) on the dendrogram, which confirms their comparable lipophilic properties. Despite of this fact, about the usage of acetonitrile-water as the potential mobile phase, suitable for lipophilicity study decides comparison of R_{MW} values obtained by this mobile phase with theoretical lipophilicity parameters (logP) and with experimental logP for examined compounds which are summarized in Table 1. Big differences observed between R_{MW} results obtained by acetonitrile-water and logP values as well as with other R_{MW} values (determined by methanol-water and dioxanewater) demonstrate that this mobile phase is not suitable to obtain the reliable value of R_{MW} for examined compounds.

Next dendrogram of similarity analysis of all chromatographic parameters (R_{MW}) determined for five examined compounds under all variants of chromatographic systems used (different mobile phases and various chromatographic plates), which is presented in Figure 3, could be helpful to estimate the impact of the two components of chromatographic systems on lipophilicity study of betamethasone derivatives. Dendrogram of similarity analysis of R_{MW} results obtained on the following chromatographic plates: RP-2F₂₅₄, RP-8F₂₅₄ and also RP-18WF₂₅₄ by respective mobile phases: methanolwater, dioxane-water and acetonitrile-water describes the greatest similarity in R_{MW} results for all examined compounds which were predicted by methanol-water and dioxane-water solvent systems, because they form one cluster on dendrogram (first subgroup). To the second subgroup belong the R_{MW} values obtained on all types of chromatographic plates used in this experiment and by acetonitrile-

R _{MW}	RP2 _(m)	RP2 _(d)	RP2 _(a)	RP8 _(m)	RP8 _(d)	RP8 _(a)	RP18W _(m)	RP18W _(d)	RP18W _(a)
RP2 _(m)	1.000	0.780	0.121	0.753	0.843	0.594	0.954	0.799	0.269
RP2 _(d)		1.000	0.517	0.962	0.956	0.670	0.800	0.940	0.568
RP2 _(a)			1.000	0.541	0.406	0.246	0.022	0.452	0.512
RP8(m)				1.000	0.984	0.616	0.850	0.987	0.498
RP8 _(d)					1.000	0.699	0.916	0.996	0.527
RP8 _(a)						1.000	0.593	0.696	0.915
RP18W _(m)							1.000	0.898	0.286
RP18W _(d)								1.000	0.542
RP18W _(a)									1.000

Table 5. Correlation matrix between all R_{MW} values obtained for examined compounds under various chromatographic conditions.

RP2, RP8 and RP18W are the R_{MW} values obtained on the following chromatographic plates: RP-2F₂₅₄, RP-8F₂₅₄ and RP-18WF₂₅₄ which were developed by use of mobile phases: (m) - methanol-water, (d) - dioxane-water, (a) - acetonitrile-water.

Figure 3. Cluster analysis of R_{MW} values of examined compounds obtained on chromatographic plates: $RP-2F_{254}$, $RP-8F_{254}$ and $RP-18WF_{254}$ developed using all mobile phases used in the experiment. RP2, RP8 and RP18W are the R_{MW} values obtained on the following chromatographic plates: $RP-2F_{254}$, $RP-8F_{254}$ and $RP-18WF_{254}$ which were developed by use of mobile phases: (m) - methanol-water, (d) - diox-ane-water, (a) - acetonitrile-water

water as mobile phase. Of all R_{MW} values presented in Figure 3 the smallest Euclidean distance (greatest similarity) indicate those R_{MW} values which were determined on RP-2F₂₅₄ and RP-18WF₂₅₄ plates and by methanol-water. It could be suggested that RP-2F₂₅₄ plates may be alternatively applied to RP-18WF₂₅₄ when mobile phase methanol-water is used. To sum the results of experimental lipophilicity parameters of five examined compounds determined by use of different RP-HPTLC systems: on various chromatographic plates and mobile phases (designated as R_{MW} values), the correlation matrix obtained between all measured R_{MW} values was constructed (Table 5). The data presented in Table 5 confirm previous conclusions that the most similar R_{MW} results to the best mobile phase system (methanol-water) gives dioxane-water because the highest correlation coefficients were obtained for the relationships between R_{MW} values predicted by methanol-water and also by dioxane-water systems. Therefore, it may be suggested that dioxane-water could be applied as alternative mobile phase system in determining of chromatographic parameter of betamethasone derivatives by means of RP-HPTLC method. Additionally, the results of correlation matrix obtained for R_{MW} values in Table 5 show that the best agreement in R_{MW} values were obtained by mobile phase: dioxane-water and chromatographic plates: RP-18WF₂₅₄ and RP-8F₂₅₄ (r > 0.99). Therefore, it could be said that it is possible to use

of RP-8F₂₅₄ plates as alternative to the RP-18WF₂₅₄ in the case of mobile phase system: dioxane-water. For methanol-water, the best correlations between R_{MW} results are observed in the case of RP-2F₂₅₄ and RP-18WF₂₅₄ plates. It could be concluded that RP-2F₂₅₄ and RP-8F₂₅₄ plates are a good alternative to RP-18WF₂₅₄ in lipophilicity study of betamethasone compounds depending on mobile phase system used. The results of cluster analysis indicate that chemometric methods such as CA are excellent tools in describing the lipophilicity of steroid compounds e.g., betamethasone derivatives. Moreover, they are helpful in optimization of chromatographic conditions needed to determine the reliable R_{MW} values for examined compounds.

Further investigations are in progress and concern the use of described lipophilicity parameters in QSAR study of examined steroids.

CONCLUSIONS

From the analysis of obtained data it can be concluded that:

- liquid chromatography in reversed-phase system such as RP-HPTLC is rapid, cost-effective method of describing the lipophilic properties of betamethasone and its related compounds;
- computational methods can be helpful in determining of partition coefficient (logP) for betamethasone derivatives as the measure of their lipophilicity;
- theoretically predicted lipophilicity parameter (logP_{average}) of examined betamethasone derivatives should be critically discussed on the basis of statistical parameters (e.g., standard error) in term of its application in lipophilicity study of these compounds;
- chromatographically determined R_{MW} values (lipophilicity parameters) for five examined betamethasone compounds depend strongly on chromatographic conditions (e.g., the kind of mobile phase system);
- methanol-water in different volume compositions is the best mobile phase system for determining of the chromatographic lipophilicity parameters (R_{MW}) of betamethasone and its related compounds;
- dioxane-water gives the similar R_{MW} values for examined compounds in comparison with those predicted by methanol-water, therefore it can be used as alternative mobile phase system in lipophilicity study of betamethasone derivatives;
- chemometric methods such as cluster analysis are excellent tool in describing the lipophilicity of betamethasone derivatives;

- CA is helpful in optimization of chromatographic conditions needed to determine the reliable R_{MW} values for examined compounds.
- the results of lipophilicity parameters (R_{MW}) presented in this work may be applied in QSAR (quantitative structure-activity relationship) of betamethasone and its related compounds: 17,21dipropionate (BP), betamethasone-17-valerate (BV17), betamethasone-21-valerate (BV21) and also betamethasone disodium phosphate (BPh).

Acknowledgment

This research was financed by the Medical University of Silesia as part of statutory research project in 2014 year, project No. KNW-1-006/N/4/0.

REFERENCES

- 1. Pastuszka M., Kaszuba A.: Postep. Derm. Alergol. 39, 196 (2012/13).
- 2. Polish Pharmacopoeia, Polish Pharmaceutical Society, Warszawa, Poland 2011.
- Jóźwiak K., Szumiło H., Soczewiński E.: Wiad. Chem. (in Polish) 55, 1047 (2001).
- Rutkowska E., Pająk K., Jóźwiak K.: Acta Pol. Pharm. Drug Res. 70, 3 (2013).
- Tetko I.V., Tanchuk V., Lai L.Y.: J. Chem. Inf. Comput. Sci. 42, 1136 (2002).
- Dross K., Sonntag C., Mannhold R.: J. Chromatogr. A. 673, 113 (1994).
- Kępczyńska E., Bojarski J., Pyka A.: J. Liq. Chromatogr. Rel. Technol. 26, 3277 (2003).
- Djaković-Sekulić TLj., Sarbu C., Perlić-Janjić N.U.: J. Planar Chromatogr. Modern TLC 18, 432 (2005).
- Kępczyńska E., Obłoza E., Stasiewicz-Urban A., Bojarski J., Pyka A.: Acta Pol. Pharm. Drug Res. 64, 295 (2007).
- Palage M., Tipercius B., Oniga S., Araniciu C., Benedec D., Oniga O. Farmacia 59, 347 (2011).
- Wujec M., Stefańska J., Siwek A., Tatarczak M.: Acta Pol. Pharm. Drug Res. 66, 73 (2009)
- Kulig K., Sapa, J., Nowaczyk A., Filipek B. Malawska B.: Eur. J. Med. Chem. 44, 3994 (2009).
- Perišić-Janjić N.U., Podunavac-Kuzmanović S.O.: J. Planar Chromatogr. Modern TLC 21, 135 (2008).
- Dołowy M.: J. Liq. Chromatogr. Rel. Technol. 23, 2281 (2009).
- Pyka A., Dołowy M.: J. Liq. Chromatogr. Rel. Technol. 26, 2741 (2003).

- Pyka A., Dołowy, M.: J. Liq. Chromatogr. Rel. Technol. 28, 297 (2005).
- 17. Pyka A., Dołowy M.: J. Liq. Chromatogr. Rel. Technol. 28, 1765 (2005).
- Pyka A., Dołowy M., Gurak, D.: J. Liq. Chromatogr. Rel. Technol. 28, 2705 (2005)
- Dołowy M.: J. Liq. Chromatogr. Rel. Technol. 32, 2281 (2009).
- 20. Dołowy M.: Curr. Issues Pharm. Med. 25, 29 (2012).
- 21. Dołowy M.: Farm. Pol. 65, 689 (2009).
- 22. Dołowy M.: in Chromatography in practice. Voelkel, A., Wasiak, W. Eds., pp. 125, Technical University in Poznań, Poznań 2011.

- Dołowy M. in Abstract book: 29th International Symposium on Chromatography ISC 2012, Toruń, 9-13. 2012. pp. 155: [S1-P18] (2012).
- 24. Open Data Drug & Drug Target Database [Internet]. Available from: http://www.drug-bank.ca. 2014.
- 25. Tetko I.V., Tanchuk V.J.: VCC Lab. Interactive analysis logP prediction [Internet]. Available from: http://www.vcclab.org/lab/alogps, 2014.
- Komsta Ł., Skibiński R., Berecka A., Gumienniczek A., Radkiewicz B., Radoń M.: J. Pharm. Biomed. Anal. 53, 911 (2010).

Received: 8. 07. 2014