ENDOHEDRAL COMPLEXES OF FULLERENE C₆₀ WITH SMALL CONVALENT MOLECULES (H₂O, NH₃, H₂, 2H₂, 3H₂, 4H₂, O₂, O₃) IN THE CONTEXT OF POTENTIAL DRUG TRANSPORTER SYSTEM

MARZENA MĘDREK1*, FRANCISZEK PLUCIŃSKI2 and ALEKSANDER P. MAZUREK1.2.

¹ Medical University of Warsaw, Faculty of Pharmacy, 1 Banacha St., 02-097 Warszawa, Poland ² National Medicines Institute, 30/34 Chełmska St., 00-725 Warszawa, Poland

Abstract: The fullerene C_{60} has chemical properties which seem to predestinate it to be effective transporter of drugs in biological system. To prove this, the DFT/B3LYP (6-31G*) calculations were performed especially in order to determine the structures and energies of the inclusion complexes of C_{60} with small molecules. It was found that the small molecule is more compact when it is located in the centre of the C_{60} cage than as isolated molecule. The calculated inclusion energies in case of: H_2O , NH_3 , O_2 , O_3 , H_2 , $2H_2$, $3H_2$, $4H_2$ are: 1.84, 3.81, 3.75, 21.07, 1.97, 20.10, 47.78 and 77.54 kcal/mol, respectively. The charge transfer and the influence of the complexed small molecules on the electrostatic potential distribution inside and outside of the C_{60} cavity are discussed.

Keywords: endohedral fullerene, drug transporter, charge transfer

Cislowski found that C_{60} cage could act as a polarizable sphere that stabilizes the polar molecules and destabilizes the non-polar (or weakly polar) ones. These results indicate that formation of the endohedral complexes, from nonpolar or slightly polar molecules such as H_2 , N_2 and CO separated molecules is an endothermic process. The C_{60} can stabilize molecules such as HF and LiH, encased inside its skeleton (1).

Pupysheva et al. studied the possible structure and stability of $nH_2O@C_{60}$ where n represents the number of H_2O molecules encapsulated in C_{60} (2).

Ren and Liu (3) investigated the endohedral complex of fullerene C_{60} with N_4 using hybrid DFT-B3LYP functional in conjunction with 6-31G (d) basis sets. Their results prove that formation of the endohedral complexes consisting of N_4 and C_{60} is an endothermic process with destabilization energies of 37.92 kcal/mol (3). Shameema et al. studied the encapsulation of molecule NH₃ inside the C_{60} cage (4). Ganji et al. studied the possibility of formation of endohedral complexes of NH₃ and C_{60} . The DFT calculations showed that maximum of 7 ammonia molecules inside the C_{60} cage have metastable structures (5). Their observations are in contrast with the semi-empirical results of Erkoc and Türker (6) that have demonstrated that $(NH_3)n@C_{60}$, where n = 1 - 6 are thermodynamically unstable but kinetically stable.

Türker and Erkoc studied the possible structure and stability of n H₂@C₆₀ where n represents the number of H₂ molecules encapsulated in C₆₀. Their calculations at the level of AM1 (RHF) level show that the structures of n H₂@C₆₀ (n: 9, 12, 15, 19, 21, 24) are stable but highly endothermic (7).

One of the most important challenges for today's medicinal chemistry seems to be development of effective transporter of drug molecules on the whole their pathway to the therapeutic target. Taking into account the desirable structural properties one expects that just fullerenes may be effective transporter of many drugs. Drug placed inside fullerene cage could be isolated from external environment and due to that protected from inactivation during transport. Additionally, such transport of drug might significantly reduce its toxicity and, at the same time, the relatively strong intermolecular interaction may extra activated transported molecules by increasing their energy (8). It is also worthy to notice the important property of such transporter system, from toxicological point of view, that the endohedral fullerenes can

^{*} Corresponding author: e-mail: marzenamedrek@onet.eu

Figure 1. The B3LYP/6-31G(d) optimized geometries of endohedral complexes

be removed from organism after the drug has been released (9, 10).

Here, we studied the endohedral complexes of fullerene C_{60} with small molecules. The molecular characteristics like stabilization energy, electrostatic potential of C_{60} cage and the charge-transfer mechanism are studied and discussed here.

METHODOLOGY

Calculations of energies of the inclusion complexes of C_{60} with small molecules were carried out with the GAUSSIAN 03W (11) and the Spartan 08 (12) program packages. Quantum mechanics provides an efficient theory to describe and understand the structures of endohedral complexes. The success of a computational study depends on the careful selection of the methodology. Here the geometries of endohedral complexes were optimized with the hybrid functional B3LYP in 6-31G* basis set. The minimum of total potential energy of endohedral complexes we determined by full geometry optimization with B3LYP/6-31G* method.

RESULTS AND DISCUSSION

Optimized equilibrium parameters

The B3LYP/6-31G (d) optimized equilibrium structures of endohedral complexes are shown in Figure 1.

The equilibrium parameters of isolated small molecules and encaged small molecules are listed in Table 1.

The fullerene cage and the encaged small molecules undergo small structural changes what is an indication of the weak interaction.

Figure 2. Electron density from total density (mapped with electrostatic potential) for endohedral fullerenes.

	H ₂ O	H ₂ O@C ₆₀		NH ₃	NH ₃ @C ₆₀
r H-O	0.969	0.968	r N-H	1.020	1.017
α	103.659	104.395	α	105.751	105.277
	O ₃	O ₃ @C60		O ₂	O ₂ @C ₆₀
r O-O	1.264	1.264	r O-O	1.216	1.216
α	117.939	115.241			
	H ₂	H ₂ @C ₆₀			
r H-H	0.743	0.741			

Table 1. The B3LYP/6–31G(d) optimized geometry parameters (length of bond in Å and bond angles in degrees).

Table 2. Total energies (E_{tot} in a.u.) and distortion energies in kcal/mol of covalent molecules at the B3LYP/6-31G (d) level.

	E_{tot} of covalent molecule calculated in optimized geometry $(E_{tot}$ in a.u.)	$\begin{array}{l} E_{tot} \text{ of covalent molecule} \\ \text{ calculated in distorted} \\ \text{geometry of the complex} \\ (E_{tot} \text{ in a.u.}) \end{array}$	Distortion energies of covalent molecule (in kcal/mol)
H ₂ O	-76.408946	-76.408932	0.01
H_2	-1.175484	-1.175482	0.00
O ₂	-150.257426	-150.257426	0.00
NH ₃	-56.547941	-56.547903	0.02
O ₃	-225.406422	-225.405847	0.36
2H ₂	-2.350931	-2.342239	5.45
3H ₂	-3.526445	-3.501990	15.34
4H ₂	-4.701916	-4.658330	27.35

Table 3.Total energies (E_{tot} in a.u.) of C_{60} and distortion energies of C_{60} in kcal/mol at the B3LYP /6-31G (d) level.

	$\begin{array}{c} E_{tot} \mbox{ of } C_{60} \mbox{ calculated} \\ \mbox{ in optimized} \\ \mbox{ geometry} \\ (E_{tot} \mbox{ in a.u.}) \end{array}$	$\begin{array}{c} E_{tot} \mbox{ of } C_{60} \mbox{ calculated} \\ \mbox{ in distorted geometry} \\ \mbox{ of the complex} \\ (E_{tot} \mbox{ in a.u.}) \end{array}$	Distortion energies of C ₆₀ (in kcal/mol)
$H_2O@C_{60}$	-2286.174363	-2286.174171	0.12
H ₂ @C ₆₀		-2286.173993	0.23
2H2@C60		-2286.173681	0.43
3H ₂ @C ₆₀		-2286.172554	1.14
4H ₂ @C ₆₀		-2286.171609	1.73
O2@C60		-2286.174334	0.02
NH ₃ @C ₆₀		-2286.174312	0.03
O ₃ @C ₆₀		-2286.173708	0.81

	Distortion energies of encapsulated molecules in kcal/mol)	Distortion energies of C_{60} (in kcal/mol)	Sum of distortion energies of encapsulated molecules and distortion energies of C_{60} (in kcal/mol)
H ₂ O@C ₆₀	0.01	0.12	0.13
H ₂ @C ₆₀	0.00	0.23	0.23
O2@C60	0.00	0.02	0.02
NH ₃ @C ₆₀	0.02	0.03	0.05
O3@C60	0.36	0.81	1.17
2H2@C60	5.45	0.43	5.88
3H2@C60	15.34	1.14	16.48
4H ₂ @C ₆₀	27.35	1.73	29.08

Table 4. Distortion energies in kcal/mol at the B3LYP /6-31G (d) level.

Table 5. Total energies (E_{tot} in a.u.), inclusion energies (E inclu in kcal/mol) and interaction energies in kcal/mol of the endohedral fullerenes at the B3LYP /6-31G (d) level.

Complex	E _{tot} in a.u	E _{inclu} in kcal/mol	Interaction energy in kcal/mol
H ₂ O@C ₆₀	-2362.586250	-1.84	-1.97
H ₂ @C ₆₀	-2287.346706	1.97	1.74
2H ₂ @C ₆₀	-2288.493259	20.10	14.22
3H ₂ @C ₆₀	-2289.624663	47.78	31.30
4H ₂ @C ₆₀	-2290.752704	77.54	48.46
O2@C60	-2436.425818	3.75	3.73
NH ₃ @C ₆₀	-2342.716229	3.81	3.76
O3@C60	-2511.547214	21.07	19.90

Table 6. Natural charge populations of separated and encapsulated small molecules at the B3LYP /6-31G (d) level.

	Charge		Total charge		
H ₂ O	O – 0.774		H 0.387	H ₂ O	0.000
H ₂ O @C ₆₀	O – 0.808	H 0.409		H ₂ O	0.010
H_2		H 0.000		H_2	0.000
H ₂ @C ₆₀		H -0.002		H_2	-0.004
NH ₃	N -0.888		H 0.296	NH ₃	0.000
NH ₃ @C ₆₀	N -0.958		H 0.320	NH ₃	0.002
O ₃	O -0.116	O -0.116	O 0.232	03	0.000
O ₃ @C ₆₀	O -0.171	O -0.171	O 0.202	03	-0.140
O ₂		O 0.000		O ₂	0.000
O2@C60		O 0.001		02	0.002

Our observations confirm that small molecules are more compact when placed inside a fullerene cavity than when they are separated (3, 5). Ren and Liu (3) demonstrated that the shortened N-N bond length in N₄@C₆₀ may suggest that the N-N bonds in N₄ are strengthened by the fullerene cage or that the fullerene cage may stabilize the highly labile tetrahedral N₄ molecule.

Son and Sung (13) calculated the exohedral and endohedral complexation energies of complexes of X@ C₆₀ between fullerene and rare gas atoms. They found that there exist two minima energies in potential surface; exohedral complexation energy (E_{exo}) which is located in the outside of the C₆₀ molecule between 6.5 and 7.5 Å and endohedral complexation energy (E_{endo}) which is located in the centre of the C₆₀ molecule (13).

Encapsulated molecule is stabilized in the centre of the carbon cage und is unbound to C_{60} .

Stability

Here we use the following notation: Inclusion energy (E_{inclu}) of the A@C₆₀ endohedral fullerenes were calculated as a difference:

 $E_{inclu} = E (A@C_{60}) - [E(A) + E(C_{60})].$ where: $E (A@C_{60})$ is the total energy of the complex $A@C_{60}, E(A)$ is the total energy of the isolated molecule H_2O , NH_3 , H_2 , $2H_2$, $3H_2$, $4H_2$, O_2 , O_3 , $E(C_{60})$ is the total energy of the isolated molecule C_{60} .

The thermodynamical stability is expected to produce negative E_{inclu} value. The more negative value of E_{inclu} , the more stable the endohedral derivative is expected. In contrast, a positive E_{inclu} defines an unstable endohedral derivative. The calculated energies of endohedral complexes, C_{60} and small molecules are presented in Tables 2-5.

Formation of the endohedral complexes from the small molecule and C_{60} separated molecules is the process with the inclusion energies of -1.84 kcal/mol for H₂O, 3.81 kcal/mol for NH₃, 3.75 kcal/mol for O₂, 21.07 kcal/mol for O₃, 1.97 kcal/mol for H₂, 20.10 kcal/mol for 2H₂, 47.78 kcal/mol for 3H₂ and 77.54 kcal/mol for 4H₂.

Electron density from total density (mapped with electrostatic potential)

The negative electrostatic potential corresponds to an area of concentrated electron density in the molecules. The positive electrostatic potential corresponds to an area of the low electron density in the molecules

Electron density from total density (mapped with electrostatic potential) for endohedral fullerenes are presented in Figure 2. The minimum values of molecular electrostatic potential in case of: $NH_3@C_{60}$, $H_2O@C_{60}$, $O_3@C_{60}$, $H_2@C_{60}$, $O_2@C_{60}$ are: -15.719, -15.466, -13.607, -12.570, -12.546 kJ/mol, respectively. The maximum values of molecular electrostatic potential in case of: $O_2@C_{60}$, $NH_3@C_{60}$, $O_3@C_{60}$, $H_2@C_{60}$, $H_2O@C_{60}$ are: 43.876, 45.651, 46.188, 49.950, 57.730 kJ/mol, respectively. The value of molecular electrostatic potential of C_{60} correlates with partial charges. The changes in the value of molecular electrostatic potential of endohedral fullerenes result from the value of molecular electrostatic potential around encapsulated molecule.

Ren and Liu studied the molecular electrostatic potential of $N_4@C_{60}$. Their results indicate that each N atom in encapsulated N_4 molecule gains (-0.012) of charge units from the C_{60} skeleton (3).

Table 6 summarizes the natural charge population of small molecules (isolated and encapsulated into the C_{60} cage).

Natural population analysis of endohedral fullerenes proves that the negative charge is transfered from fullerene C_{60} cage to the encapsulated molecules ($O_3@C_{60}$, $H_2@C_{60}$) and from encapsulated molecules to the fullerene C_{60} cage ($NH_3@C_{60}$, $O_2@C_{60}$, $H_2O@C_{60}$).

The values of natural charge population on the guest species inside the C_{60} skeleton decrease in the series as follows: O_3 (-0.140), H_2 (-0.004), NH_3 (0.002), O_2 (0.002), H_2O (0.010) (cf. Table 6).

CONCLUSIONS

From analysis of the obtained results the following can be concluded: (i) among the all studied complexes only $H_2O@C_{60}$ complex has negative inclusion energy; (ii) the remained studied complexes have only slightly positive inclusive energies which, above all, do not mean that these complexes are unstable on account of the expected high energetic barrier of transfer of even small molecules through the wall of fullerene cage; (iii) all complexes are stabilized by universal interactions and all molecules forming complex are deformed in comparison with their structures in unbound state.

REFERENCES

- 1. Cioslowski J.: J. Am. Chem. Soc. 113, 4139 (1991).
- Pupysheva O.V., Farajian A.A., Yakobson, B.I.: Nano Lett. 8, 767 (2008).
- Ren X.Y., Liu, Z.Y.: Struct. Chem. 16, 567 (2005).

- 4. Shameema O., Ramachandran C.N., Sathyamurthy N.: J. Phys. Chem. A 110, 2 (2006).
- Ganji M.D., Mohseni M., Goli O.: J. Mol. Struct. (Theochem) 913, 54 (2009).
- 6. Erkoc S., Türker L.: J. Mol. Struct. (Theochem) 640, 57 (2003).
- 7. Türker L., Erkoc S., J. Mol. Struct. (Theochem) 638, 37 (2003).
- 8. Andreev S.M., Babakhin A.A., Petrukhina A.O. et al.: Dokl. Akad. Nauk 370, 261 (2000).
- Dugan L.L., Turetsky D.M., Du Ch., Lobner D., Wheeler M., Almli C.R., Shen C. K.-F., Luh T.-Y., Choi D.W., Lin, T.-S.: Proc. Natl. Acad. Sci. USA 94, 9434 (1997).
- Huczko A., Bystrzewski M.: Fullerenes 20 Years After Discovery, 1st edn., UW, Warszawa 2007.
- 11. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E, Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven Jr.T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R.,

Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T, Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M. Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03, Rev A.1. Gaussian Inc., Pittsburgh, PA 2003.

- Wavefunction Inc. Spartan 08; Wavefunction Inc.: 18401 Von Karman Avenue, suite 370, Irvine, CA 92612, 2009.
- 13. Son M.S., Sung Y.K.: Chem. Phys. Lett. 245, 113 (1995).

Received: 08. 08. 2012