DRUG SYNTHESIS

STUDIES ON QUINOXALINE DERIVATIVES. SYNTHESIS OF QUINOXALYLAMINO-1,3-DIAZACYCLOALKANES WITH POTENTIAL HYPOTENSIVE ACTIVITY

HENRYK FOKS¹, KRYSTYNA WISTEROWICZ², ANTONI NASAL², BARBARA DAMASIEWICZ² and ALEKSANDRA RADWAŃSKA²

¹Department of Organic Chemistry, ²Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, 107, Gen. J. Hallera, 80–416 Gdańsk

Abstract: A series of quinoxalylamino-1,3-diazacycloalkanes was obtained by the reaction of the corresponding substituted aminoquinoxalines with alcohols and amines. The effect of selected compounds on the blood pressure of anaesthesized normotensive rats was studied.

Keywords: quinoxaline derivatives, synthesis, hypotensive activity.

The present paper reports on results of our studies on the synthesis of new quinoxaline derivatives with a potential pharmacological activity. The reactants for the preparation of the title quinoxalylamino-1,3-diazacycloalkanes were the corresponding substituted aminochloro-quinoxalines [Ia-d] (1-3), which were treated with some alcohols and amines. The following alcohols were used: 2-phenylethanol as well as benzyl-, 4-chlorobenzyl-, 4-fluorobenzyl-, 4-methoxybenzyl-, 2,4-dichlorobenzyl-, and 2,6-dichlorobenzyl-alcohol. The amines used were: benzylamine, 1-(2-aminoethyl)-piperazine, 4-(2-aminoethyl)-morpholine, 4-(3-aminopropyl)-morpholine, 4-benzylpiperidine and 1-phenylpiperazine. The series of aminoquinoxalines [IIa-p, IIIa-m] were treated with benzoylisothiocyanate to give 1-quinoxalyl-3'benzoylthioureas [IVa-f], which were hydrolyzed to the corresponding thioureas [Va-j]. S-methylisothioureas [VIa-f] were obtained in a reaction of appropriate quinoxalylthioureas with methyl iodide. Cyclization of the imidazoline ring [VIIa-f] was carried out on heating the hydroiodides of S-methylquinoxalylthioureas [VIa-f] with ethylenediamine.

RESULTS AND DISCUSSION

The characteristics of quinoxalylamino-1,3-diazacycloalkanes [VIIa-f] and of the intermediate products are given in Table 1. The structure of the newly synthesized compounds was confirmed by spectral (IR, NMR) analyses.

The influence of the selected quinoxaline derivatives [VIIa-c, f, g] on the blood pressure of

anaesthesized normotensive rats was studied. The compounds were administered i.v. at doses limited by their solubility in physiologically compatible aqueous solvents. Thus, the maximum doses ranged from 0.04 and 2.5 mg/kg. The results obtained are collected in Table 2.

At the doses applied the blood pressure lowering effects of the agents studied was relatively low. Only in the case of compound [VIIc] a 38 \pm 4% decrease in the blood pressure of rats was observed. However, the dose required is relatively high as compared with that of the existing antihypertensive drugs.

The effects of the most active compound [VIIc] in the beating rate and amplitude of isolated rat heart atria was also been studied. The preparation was assumed to reflect the activity of this compound with respect to \(\beta\)-adrenergic receptors. Derivative [VIIc] elicited some antagonistic effects towards the chronotropic and inotropic action of ISO on isolated rat heart atria. When added to the bath at a concentration of 7.5 x 10⁻⁷ mol/dm³, the compound decreased the beating rate and amplitude of the atria by $73 \pm 12\%$ and $19 \pm 8\%$, respectively. The some compound added to the bath at cumulative concentrations of 7.5 ± 10^{-1} - 7.5 x 10⁻⁶ mol/dm³ decreased the beating rate of atria and had no significant effect on the amplitude of the atria. At the concentration of 7.5 x 10⁻⁶ mol/dm³ of [VIIc], the decrease of the beating rate was minimum, $62 \pm 14\%$.

The antagonistic effect of derivative [VIIc] forwards the inotropic action of ISO on the rat heart atria and thus confirms its β -adrenolytic activity.

Table 1. Characteristics of the newly synthesized quinoxaline derivatives

Comp.	M.p.	Yield	Formula		
No	°C	1 %	Molecular		
	(solvent)	~	weight		
IIa	143–145	25	C ₁₅ H ₁₃ N ₃ O		
114	(CH ₃ OH)	2.5	251.3		
ПЬ	138–140	68			
110	(CH ₃ OH)	00	C ₁₆ H ₁₅ N ₃ O		
		-	265.3		
IIc	130–132	24	C ₁₅ H ₁₂ ClN ₃ O		
**)	(acetone)		285.7		
IId	172–174	72	$C_{16}H_{14}ClN_3O$		
	(CH ₃ OH)	-	299.8		
Пе	138–143	70	C ₁₆ H ₁₄ CIN ₃ O		
	(CH ₃ OH)		299.8		
IIf	136–141	44	$C_{15}H_{12}FN_3O$		
	(CH ₃ OH)		269.3		
IIg	155–159	64	$C_{16}H_{14}FN_3O$		
	(CH ₃ OH)		283.3		
Πh	185–190	43	$C_{17}H_{16}FN_3O$		
	(CH ₃ OH)	<u> </u>	297.3		
IIi	139–143	21	$C_{16}H_{15}N_3O_2$		
	(CH ₃ OH)	<u> </u>	281.3		
IIj	169–172	30	C ₁₇ H ₁₇ N ₃ O ₂		
	(CH ₃ OH)		295.3		
IIk	189–193	46	$C_{18}H_{19}N_3O_2$		
	(CH ₃ OH)		309.3		
Ш	197–201	31	$C_{15}H_{11}Cl_2N_3O$		
	(CH ₃ OH)		320.2		
IIm	174–176	53	$C_{15}H_{11}Cl_2N_3O$		
	(acetone/H ₂ O)		320.2		
IIn	130–132	15	$C_{16}H_{15}N_3O$		
	(CH ₃ OH)		265.3		
Ho	134–136	36	$C_{17}H_{17}N_3O$		
	(C_2H_5OH)		279.3		
Пр	143–145	29	$C_{18}H_{19}N_3O$		
	petroleum ether		293.3		
Ша	263-268	56	C ₁₅ H ₁₄ N ₄		
	(acetone)		250.3		
IIIb	146-149	33	C ₁₇ H ₁₈ N ₄		
	(CH ₃ OH)		278.4		
IIIc	164–168	38	$C_{15}H_{21}N_5$		
	(CH ₃ OH/H ₂ O)		271.4		
IIId	250-255	81	C ₁₄ H ₁₉ N ₅ O		
	(CH ₃ OH)		273.3		
IIIe	202–203	42	C ₁₅ H ₂₁ N ₅ O		
	(CH ₃ OH)		287.4		
IIIf	226–229	49	C ₁₇ H ₂₅ N ₅ O		
	(CH ₃ OH)		315.4		
IIIg	200–204	62	C ₂₀ H ₂₂ N ₄		
	(CH ₃ OH)		318.4		
IIIh	179–181	62	$C_{22}H_{26}N_4$		
	(CH ₃ OH)		346.5		
IIIi	224-227	88	C ₁₈ H ₁₉ N ₅		
	(CH ₃ OH) 88		305.4		
IIIj	204-207	64	$C_{19}H_{21}N_5$		
ı	(C ₂ H ₅ OH)		319.4		
	(C2H5UH)		319.4		

Comp.	M.p.	Yield	Formula
No	°C	%	Molecular
	(solvent)		weight
IIIk	241-246	31	$C_{19}H_{21}N_5$
	(C_2H_5OH)		319.4
IIII	239-242	38	$C_{20}H_{23}N_5$
	(acetone)		333.4
IIIm	243-247	35	$C_{18}H_{18}N_6O_2$
	(CH ₃ OH)		350.4
ΙVa	166–168	69	C ₂₃ H ₁₉ N ₄ O ₂ S
	(acetone)		415.5
IVb	178–182	59	C ₂₄ H ₂₀ N ₄ O ₂ S
	(acetone)		428.5
IVc	174–176	50	C ₂₃ H ₁₇ ClN ₄ O ₂ S
	(acetone/H ₂ O		448.9
IVd	167–169	63	C ₂₄ H ₁₉ ClN ₄ O ₂ S
1	(acetone/H ₂ O	0.5	462.9
IVe	169–171	58	C ₂₃ H ₁₆ Cl ₂ N ₄ O ₂ S
176	(acetone)	30	483.4
IVf	188–190	86	
141	(acetone/H ₂ O)	80	C ₂₃ H ₁₆ Cl ₂ N ₄ O ₂ S 483.4
Va		(2)	
va	205–208 (CH ₃ OH)	62	C ₁₆ H ₁₄ N ₄ OS
X/L	, , , ,	0.1	310.4
Vb	213–215	81	C ₁₇ H ₁₆ N ₄ OS
*7-	(acetone)	70	324.4
Vc	180–182	79	C ₁₆ H ₁₃ ClN ₄ OS
T7.	(CH ₃ OH)	ļ <u> </u>	344.8
Vd	216–220	74	C ₁₇ H ₁₅ CIN ₄ OS
	(CH ₃ OH)		358.8
Ve	151–153	53	$C_{16}H_{12}Cl_2N_4OS$
	(CH ₃ OH/H ₂ O)		379.3
Vf	177–179	74	$C_{16}H_{12}Cl_2N_4OS$
	(CH ₃ OH)	-	379.3
Vg	175–177	62	$C_{25}H_{30}N_6S$
	(CH ₃ OH)		446.5
Vh	262–267	56	$C_{25}H_{24}N_6S$
	(CH ₃ OH)		440.5
Vi	165–170	68	$C_{26}H_{26}N_6S$
	(CH ₃ OH)		454.5
Vj	307–310	64	$C_{25}H_{23}BrN_6S$
	(CH ₃ OH)		519.5
Vla	128-130	80	$C_{17}H_{17}IN_4OS$
	(acetone/H ₂ O)		452.3
VIb	170–173	40	C18H19IN4OS
	(acetone)		466.3
VIc	144-146	25	C ₁₇ H ₁₆ CIIN ₄ OS
	(acetone/H ₂ O)		486.7
VId	168–171	44	C ₁₈ H ₁₈ CIIN ₄ OS
	(acetone)		500.8
VIe	182-184	23	C ₁₇ H ₁₅ Cl ₂ IN ₄ OS
	(acetone)		521.2
VIf	175–178	26	C ₁₇ H ₁₅ Cl ₂ IN ₄ OS
	(acetone/H ₂ O)		521.2
VIIa	170–173	54	C ₁₈ H ₁₇ N ₅ O
	(CH ₃ OH)	-	319.4
	· /		

Comp.	M.p.	Yield	Formula
No	,C	%	Molecular
	(solvent)		weight
VIIb	163-166	30	$C_{19}H_{19}N_5O$
	(CH ₃ OH)		333.4
VIIc	98-100	55	C ₁₈ H ₁₆ ClN ₅ O
	(CH ₃ OH)		353.8
VIId	186-190	35	C ₁₉ H ₁₈ ClN ₅ O
	(CH ₃ OH)		367.8
VIIe	217–219	46	C18H15Cl2N5O
	(toluene)		388.3
VIIf	189–192	36	C ₁₈ H ₁₅ Cl ₂ N ₅ O
	(CH ₃ OH/H ₂ O)		388.3

Table 2. Influence of the compounds studied on the blood pressure of normotensive rats.

Compound	Dose mg/kg	Maximum change of blood pressure, %
VIIa	1.25	-28 ± 5
VIIb	0.04	-13 ± 6
VIIc	0.3	-38 ± 7
VIIf	0.25	-12 ± 3
VIIg	2.5	-26 ± 2

However, the effect observed appeared to be relatively weak as compared with that of the existing β -adrenolytics.

The model for studying peripheral α -adrenoceptor mediated reactions was an isolated rat tail artery preparation. Compound [VIIc] added to the perfusing fluid in concentration of 5 x 10^{-4} mol/dm³ decreased the maximum NA vasoconstrictory effect of $45 \pm 6\%$. This observation confirms its weak α -adrenolytic properties.

EXPERIMENTAL

Chemistry

Melting points (uncorrected) were determined with a Boëtius apparatus. IR spectra were taken with a Perkin–Elmer 257 spectrophotometer and the NMR spectra with a BS 487 50 MHz apparatus, using TMS as an external standard. All compounds were analyzed for C, H and N. The analytical results were within $\pm~0.3\%$ of the theoretical values.

Synthesis of aminoquinoxalines [IIa-p]

Ilustrative synthesis: anhydrous dioxane, 5 cm³, and 0.06 mol (1.5 g) of a 50% suspension of sodium hydride in paraffin oil and 0.02 mol (3.8 g)

of 2-amino-3-chloroquinoxaline [**Ib**] were added to a solution of 0.03 mol (4.6 g) of 4-chlorobenzyl alcohol. The reaction mixture was heated for 1 h, then a volatile material was evaporated under a reduced pressure. The solid residue was recrystallized from methanol. The reaction yielded 4.3 g (72%) for [**IId**], m.p. 172-174°C.

For compounds [**Ha-p**]: IR(cm⁻¹): 3200–3400 (NH); 3050–3100 (CH aromat.); 2950–2980 (CH aliphat.).

 ^{1}H -NMR (d₆-DMSO or CDCl₃); 2.3-2.7 (s, 3 (or 6) H, n x CH₃, n = 1, 2); 5.3-5.6 (s, 2H, CH₂); 7.2-7.5 (m, aromatic protons).

Synthesis of aminoquinoxalines [IIIa-m]

Ilustrative synthesis: a mixture of 0.0065 mol (2 g) of compound [Ia] and 0.04 mol (6 cm³) of 4–phenylpiperazine was heated for 3 h. The resulting precipitate was recrystallized from methanol (the salt insoluble in methanol was filtered off). The reaction yielded 2.9 g (88%) of [IIIi], m.p. 224–227°C.

For compounds [**IIIa-m**]: IR(cm⁻¹): 3440–3490 (NH); 3040–3080 (CH aromat.); 2930–2980 (CH aliphat.).

¹H–NMR (d₆-DMSO or CDCl₃): 2.5–2.6 (m (d) 10H piperidine or 8H morpholine); 3.6–3.7 (s (d) 4H, 2CH₂); 4.7 (d, 2H, CH₂); 7.2–7.4 (m, aromatic protons).

Synthesis of 1-quinoxalyl-3'-benzoylthioureas [IVa-f]

Ilustrative synthesis: to a solution of benzoylisothiocyanate obtained by mixing 1.5 cm³ benzoyl chloride with 0.96 g ammonium isothiocyanate in 150 cm³ anhydrous acetone, 0.012 mol (3.8 g) of [**IId**] in 300 cm³ of anhydrous acetone was added. The reaction mixture was heated for 1 h. After cooling, the reaction mixture was poured into cold water. The resulting precipitate was collected by filtration and recrystallized from acetone. The reaction yielded 3.5 g (63%) of [**IVd**], m.p. 167–169°C.

For compounds [**IVa–f**]: IR(cm⁻¹): 3200–3400 (NH); 3050–3080 (CH aromat.); 2920–2960 (CH aliphat.); 1590–1650 (C=O); 1500, 1480, 1440 (CH aromat.).

¹H–NMR (d₆-DMSO or CDCl₃): 4.5–4.8 (d, 2H, CH₂); 7.2–7.6 (m, aromatic protons).

Synthesis of quinoxalylthioureas [Va-j]

Ilustrative synthesis: compound [**IVd**] 0.006 mol (2.7 g) was heated for 0.5 h with 70 cm³ of 10% aqueous sodium hydroxide. After cooling, the resulting precipitate was collected by filtration and

ZZI	
Z Z Z	VIIIa-f
Y H ₂ NCH ₂ CH ₂ NH ₂	
SCH ₃ AND C=NH × Hy R ³	Vla-f
R ² NHCSNHR⁴ CH _{3-J} P	IVa-f Va-j
R3 N NH2 PhCONCS NEXT NAOH	lla-p Illa-n
R ² N NH ₂ R ¹ H NaH	la-d

No.	R	₹ <u>2</u>	R3	Α.	No	R.	R ²	₹3	R⁴
Ia	ı	Ш	=	ı	IIo	OCH ₂ CH ₂	CH3	Н	ı
II.	l	Ħ	CH ₃	1	IIp	OCH ₂ CH ₂	CH3	CH,	1
Ic	ł	CH3	СН,		IIIa	NHCH,Ph	Н	н	I
Id	. I	NO ₂		1	IIIb	NHCH ₂ Ph	СН3	CH ₃	-
IIa, IVa, Va, VIa, VIIa	, COCH ₂	Η	Η	СОРћ, Н	Шс	NHCH ₂ CH ₂ - N	Н	Н	ı
IIb, IVb, Vb, VIb, VIIb	OCH ₂	五	CH,	COPh, H	PIII	NHCH ₂ CH ₂ - N O	π	H	1
IIe, IVe, Vc, VIe, VIIe	10-{\(\) 2-CO	ш	#	COPh, H	IIIe	NHCH ₂ CH ₂ CH ₂ ⁻ N O	H	н	1
IId, IVd, Vd, VId, VIId	OCH ₂ CI	Н	CH3	COPh, H	III	NHOH ₂ CH ₂ CH ₂ -N	CH3	CH,	ı

Scheme

I	1	T T	1	1	I	ı		- CH	B
H	CH	H	CH	н	CH3	H	H	H	Н
н	CH,	II	H	CH,	CH,	NO	五	田	Н
y dd-v	rd-z	ra-z	Z Z	rd-z	r d z	rd-z	Z Z	N N N N N N N N N N N N N N N N N N N	N Hq-N
IIIg	H	IIIi, Vg	Î	IIIk	III	IIIm	v.	Vi	Vj
1	I	ı	1	ı	I	i	COPh, H	соРћ, н	I
н	Ξ	Ξ	CH,	н	н	CH	Ħ	Ħ	π
CH3	н	CH,	CH,	H	CH3	CH3	ш	Ħ	н
OCH ₂ OCH ₃	och ₂ -{COCH ₃	CCH ₂ COCH ₃	OCH ₂ CI	COCH ₂	OCH ₂ CH ₂				
Пе	JII	IIg	¶I III	ii	II	II	III, IVI, Ve, VIe, VIIe	IIm, IVf, Vf, VIf, VIIf	E

recrystallized from methanol. The reaction yielded 1.6 g (74%) of [Vd], m.p. 203–205°C.

For compounds [**Va-j**]: IR(cm⁻¹): 3200–3300 (NH); 3040–3080 (CH aromat.); 2920–2940 (CH aliphat.); 1510, 1480, 1450 (CH aromat.).

¹H–NMR (d₆-DMSO or CDCl₃): 3.5–3.8 (m, 8H piperazine); 4.4–5.5 (s (d) 2H, CH₂); 7.2–7.8 (m, aromatic protons):

Synthesis of hydroiodides of S-methylquinoxalylisothioureas [VIa-f]

Ilustrative synthesis: to 0.004 mol (1.6 g) of compound [Vd], 0.008 mol methyl iodide dissolved in 170 cm³ acetone was added. The reaction mixture was refluxed for 1 h. Then acetone was distilled off under a reduced pressure. The resulting precipitate was recrystallized from methanol. The reaction yielded 1.1 g (44%) of [VId], m.p. 168–171°C.

For compounds [**VIa-f**]: IR(cm⁻¹): 3200–3450 (NH); 3060–3080 (CH aromat.); 2920–2960 (CH aliphat.).

 1 H–NMR (d₆-DMSO or CDCl₃): 4.3–5.4 (s (d), 2H, CH₂); 7.3–7.8 (m, aromatic protons).

Synthesis of quinoxalylamino-1,3-diazacycloalkanes [VIIa-f]

Ilustrative synthesis: to a solution of 0.0016 mol (0.8 g) of compound [VId] in 15 cm³ methanol 0.0035 mol (0.2 g) of ethylenediamine dissolved in 2 cm³ methanol was added. The reaction mixture was refluxed for 6 h. Then methanol was distilled off under a reduced pressure and 25 cm³ of water was added to the residue. The resulting precipitate was collected by filtration and recrystallized from methanol. The reaction yielded 0.2 g (35%) of [VIId], m.p. 186–190°C.

For compounds [**VIIa-f**]: IR(cm⁻¹): 3200–3400 (NH); 3060–3100 (CH aromat.); 2920–2940 (CH aliphat.).

 1 H-NMR (d₆-DMSO or CDCl₃): 3.4–3.7(d, 4H, CH₂CH₂); 5.4–5.6(s, 2H, CH₂); 7.2–7.8(m, aromatic protons).

Pharmacological Tests

Measurements of the effects on the blood pressure in rats

Male Wistar rats (weight 250–300 g) were anaesthesized with urethane and the trachea was cannulated to allow respiration. Blood pressure was measured in the cannulated carotid artery with a pressure transducer connected to a blood pressure meter (8041, S & W Medico Teknik A/S, Denmark). The agents studied were injected into the left femoral vein. A single dose of a magnitude

limited by the solubility of the compound was administered to each animal. Maximum changes of the mean blood pressure were recorded.

Measurements of the effects on isolated rat heart atria

The experiments were performed according to Levy (4). Male Wistar rats (weight 200–250 g) were anaesthesized with urethane. Spontaneously beating atrial pairs were allowed to stabilize in an organ bath containing a modified Krebs solution. After equilibration, the response of the atria to inotropic and chronotropic effects of isoprenaline (ISO) added cumulatively to the bath was recorded.

The compounds under study were added to the bath at a concentration of $7.5 \times 10^{-6} \text{ mol/dm}^3$, in the presence of the cumulative concentrations ISO ranging from 10^{-9} to 10^{-5} mol/dm³.

Changes in the beating rate and amplitude of the atria were expressed as the percentage of the maximum ISO effects.

The effects of the agents tested on isolated rat heart atria were also studied in the absence of ISO in the bath. The compounds under study were added in cumulative concentrations $7.5 \times 10^{-11} - 7.5 \times 10^{-5} \text{ mol/dm}^3$.

Experiments on isolated rat tail artery

A perfused tail artery preparation according to Nicholas (5) was used. The artery was prepared from male Wistar rats (weight 180–200 g) under the urethane anaesthesia. The cannulated proximal end of the artery was transferred to an organ bath and perfused with the oxygenated Krebs solution. The constrictory activity of the compounds studied was assayed after administration in increasing concentrations. The concentration *vs.* effect curves were plotted, assuming the constriction induced by 10^{-4} mole/dm³ NA (added in cumulative manner to the bath solution) to be 100%.

REFERENCES

- Stevens I.R., Pfister K., Walf F.J.: J. Am. Chem. Soc. 68, 1035 (1946).
- Mager H.I.X., Berends W.: Rec. Traw. Chim. 77, 842 (1958).
- 3. Saikachi H., Tagami S.: Chem. Farm. Bull. 9, 941 (1961); *Chem. Abs.* 57, 16614 (1962).
- Levy J.V.: in Methods in Pharmacology, p. 77, Aschwartz – Appleton – Century Crofts, New York 1971.
- Nicholas T.E.: J. Pharm. Pharmacol. 21, 826 (1969).

Received: 12.11.1998